Black Phosphorus: Narrow Gap, Wide Applications.
نویسنده
چکیده
The recent isolation of atomically thin black phosphorus by mechanical exfoliation of bulk layered crystals has triggered an unprecedented interest, even higher than that raised by the first works on graphene and other two-dimensionals, in the nanoscience and nanotechnology community. In this Perspective, we critically analyze the reasons behind the surge of experimental and theoretical works on this novel two-dimensional material. We believe that the fact that black phosphorus band gap value spans over a wide range of the electromagnetic spectrum (interesting for thermal imaging, thermoelectrics, fiber optics communication, photovoltaics, etc.) that was not covered by any other two-dimensional material isolated to date, its high carrier mobility, its ambipolar field-effect, and its rather unusual in-plane anisotropy drew the attention of the scientific community toward this two-dimensional material. Here, we also review the current advances, the future directions and the challenges in this young research field.
منابع مشابه
Semiconducting layered blue phosphorus: a computational study.
We investigate a previously unknown phase of phosphorus that shares its layered structure and high stability with the black phosphorus allotrope. We find the in-plane hexagonal structure and bulk layer stacking of this structure, which we call "blue phosphorus," to be related to graphite. Unlike graphite and black phosphorus, blue phosphorus displays a wide fundamental band gap. Still, it shoul...
متن کاملTwo-Dimensional Material Nanophotonics
The emerging two-dimensional (2D) materials exhibit a wide range of electronic properties, ranging from insulating hexagonal boron nitride (hBN), semiconducting transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), to semi-metallic graphene. The plethora of 2D materials together with their heterostructures, which are free of the traditional...
متن کاملGallium Phosphide IMPATT Sources for Millimeter-Wave Applications
The potentiality of millimter-wave (mm-wave) double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on a wide bandgap (WBG) semiconductor material, Gallium Phosphide (GaP) has been explored in this paper. A non-sinusoidal voltage excited (NSVE) large-signal simulation method has been used to study the DC and high frequency characteristics of DDR GaP IMPATTs dsigned to ope...
متن کاملBlack phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.
Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black p...
متن کاملInfrared fingerprints of few-layer black phosphorus
Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 6 21 شماره
صفحات -
تاریخ انتشار 2015